Home
Class 11
MATHS
What is the smallest positive integer n ...

What is the smallest positive integer `n` for which `(1+i)^(2n)=(1-i)^(2n)?`

Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest positive integer n for which (1+i)^(2n) = (1-i)^(2n) is

The smallest positive integer for which (1 + i)^(2n)=(1 -l)^(2n) is

The least positive integer n for which (1+i)^(n)=(1-i)^(n) . is

Find the smallest positive integer n, for which ((1+i)/(1-i))^(n)=1

What is the least positive integer n for which ((1+i)/(1-i))^(n)=1 ?

The smallest positive integer 'n' for which ((1+i)/(1-i))^(n)=1 is