Home
Class 12
MATHS
If f(x)=(t+3x-x^2)/(x-4), where t is a p...

If `f(x)=(t+3x-x^2)/(x-4),` where `t` is a parameter that has minimum and maximum, then the range of values of `t` is `(0,4)` (b) `(0,oo)` `(-oo,4)` (d) `(4,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the function f(x)=(t+3x-x^(2))/(x-4), where is a parameter, has a minimum and a maximum, then the greatest value of t is ….. .

If cos^(2)x-(c-1)cos x+2c>=6 for every x in R, then the true set of values of c is (2,oo)(b)(4,oo)(c)(-oo,-2)(d)(-oo,-4)

If e^(x)+e^(f(x))=e, then the range of f(x) is (-oo,1](b)(-oo,1)(1,oo)(d)[1,oo)

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

f(x) = x^2 increases on: (a) ( 0,oo) (b) (-oo,0) (c) (-7,-3) (d) (-oo,-3)

If log_(3)(x^(2)-6x+11)<=1, then the exhaustive range of values of x is: (-oo,2)uu(4,oo)(b)(2,4)(-oo,1)uu(1,3)uu(4,oo)(d) none of these

If the function f(x)=2x^(2)-kx+5 is increasing on [1,2], then k lies in the interval (a) (-oo,4)(b)(4,oo)(c)(-oo,8)(d)(8,oo)

If f(x)=x^(2)+x+(3)/(4) and g(x)=x^(2)+ax+1 be two real functions, then the range of a for which g(f(x))=0 has no real solution is (A) (-oo,-2)(B)(-2,2)(C)(-2,oo)(D)(2,oo)

Let f(x)=a^(x)-x ln a, a> 1. Then the complete set of real values of x for which f(x)>0 is (a)(1,oo)(b)(-1,oo)(c)(0,oo)(d)(0,1)

The range of a for which the equation x^(2)+ax-4=0 has its smaller root in the interval (-1,2)is(-oo,-3) b.(0,3) c.(0,oo) d.(-oo,-3)uu(0,oo)