Home
Class 12
MATHS
If 15! =2^oo* 3^beta*5^gamma*7^delta*1...

If `15! =2^oo* 3^beta*5^gamma*7^delta*11^theta * 13^phi`, then the value of `oo-beta+gamma-delta+theta-phi`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If 15! =2^alpha* 3^beta*5^gamma*7^delta*11^theta * 13^phi , then the value of alpha-beta+gamma-delta+theta-phi is:

If 15! =2^alpha* 3^beta*5^gamma*7^delta*11^theta * 13^phi , then the value of alpha-beta+gamma-delta+theta-phi is:

If 102! =2^(alpha)*3^(beta)*5^(gamma)*7^(delta) …, then

If 102! =2^(alpha)*3^(beta)*5^(gamma)*7^(delta) …, then

If 102! =2^(alpha)*3^(beta)*5^(gamma)*7^(delta) …, then

If 102!=2^(alpha)*3^(beta)*5^(gamma)*7^(delta) …, then

If 102!=2^(alpha)*3^(beta)*5^(gamma)*7^(delta) …, then

Let [1,3] be domain of f(x) .If domain of f(log_(2)(x^(2)+3x-2)) is [-alpha,-beta]uu[gamma ,delta]; alpha ,beta ,gamma ,delta>0 then the value of (alpha+beta+2 gamma+3 delta)/(17) is

If alpha and beta are the roots of x^(2) + qx + 1 = 0 and gamma, delta the roots of x^(2) + qx + 1 = 0 , then the value of (alpha - gamma ) (beta - gamma ) (a + delta ) beta + delta) is :