Home
Class 12
MATHS
Prove that |x^2x^2-(y-z)^2y z y^2y^2-(z-...

Prove that `|x^2x^2-(y-z)^2y z y^2y^2-(z-x)^2z x z^2z^2-(x-y)^2x y|=(x-y)(y-z)(z-x)(x+y+z)(x^2+y^2+z^2)dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |{:(x^(2),,x^(2)-(y-z)^(2),,yz),(y^(2),,y^(2)-(z-x)^(2),,zx),(z^(2),,z^(2)-(x-y)^(2),,xy):}| =(x-y) (y-z) (z-x)(x+y+z) (x^(2)+y^(2)+z^(2))

Prove that |[x,x^(2),x^(4)],[y,y^(2),y^(4)],[z,z^(2),z^(4)]|=xyz(x-y)(y-z)(z-x)(x+y+z)

Prove that : |{:(x-y-z,2x,2x),(2y,y-z-x,2y),(2z,2z,z-x-y):}|

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

Prove the following : |{:(x,x^(2),y+z),(y,y^(2),z+x),(z,z^(2),x+y):}|=(y-z)(z-x)(x-y)(x+y+z)

If x+y+z=xzy , prove that : (2x)/(1-x^2) + (2y)/(1-y^2) + (2z)/(1-z^2) = (2x)/(1-x^2) (2y)/(1-y^2) (2z)/(1-z^2)

Prove that : |{:((y+z)^(2),x^(2),x^(2)),(y^(2),(x+z)^(2),y^(2)),(z^(2),z^(2),(x+y)^(2)):}|=2xyz (x+y+z)^(3)