Home
Class 12
MATHS
If a >0 and discriminant of a x^2+2b x+...

If `a >0` and discriminant of `a x^2+2b x+c` is negative, then `|[a,b,ax+b],[b,c,bx+c],[ax+b,bx+c,0]|` is `+v e` b. `(a c-b)^2(a x^2+2b x+c)` c. `-v e` d. `0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a gt 0 and discriminant of ax^(2) + 2bx + c is negative, then Delta = |(a,b,ax +b),(b,c,bx +c),(ax +b,bx +c,0)| , is

Prove that: |(a,b, ax+by),(b,c,bx+cy), (ax+by, bx+cy,0)|=(b^2-a c)(a x^2+2b x y+c y^2) .

If both the roots of ax^(2)+bx+c=0 are negative and b<0 then :

The non-zero roots of the equation Delta =|(a,b,ax+b),(b,c,bx+c),(ax+b,bx+c,c)|=0 are

The non-zero roots of the equation Delta=|(a,b,ax+b),(b,c,bx+c),(ax+b,bx+c,c)|=0 are

If x ^(2)+bx+b is a factor of x ^(3) +2x ^(2) +2x+c (c ne 0), then b-c is :

If x ^(2) +bx+b is a factor of x ^(3) +2x ^(2)+2x + c (c ne 0), then b-c is :

If one root of ax^(2)+bx-2c=0(a,b,c real) is imaginary and 8a+2b>c, then

Given that ax^(2)+bx+c=0 has no real roots and a+b+c 0 d.c=0