Home
Class 12
MATHS
The number of distinct real roots of |[s...

The number of distinct real roots of `|[sinx,cosx,cosx],[cosx,sinx,cosx],[cosx,cosx,sinx]|=0` in the interval `pi//4lt=xlt=pi//4` is `0` b. `2` c. `1` d. `3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct real roots of |(sinx, cosx, cosx),(cos x,sin x,cos x),(cos x,cos x,sin x)|=0 in the interval -(pi)/4 le x le (pi)/4 is

The number of distinct real roots of |(sinx,cosx,cosx),(cosx,sinx,cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (a) 0 (b) 2 (c) 1 (d) 3

The number of distinct roots of |(sinx, cosx, cosx),(cosx, sinx, cosx),(cosx,cosx,sinx)|=0 in the interval -pi/4 le x le pi/4 is (A) 0 (B) 2 (C) 1 (4) 2

|[cosx,-sinx],[sinx,cosx]|

If |[cosx, sinx, cosx], [-sinx, cosx, sinx], [-cosx, -sinx, cosx]|=0 , then x=

If -pi/4lexlepi/4 then abs((sinx,cosx,cosx),(cosx,sinx,cosx),(cosx,cosx,sinx))=0 then find the number of solution

Solve sinx+cosx=1+sinx.cosx