Home
Class 12
MATHS
A function f is defined by f(x)=|x|^m|x-...

A function `f` is defined by `f(x)=|x|^m|x-1|^nAAx in Rdot` The local maximum value of the function is `(m ,n in N),` `1` (b) `m^nn^m` `(m^m n^n)/((m+n)^(m+n))` (d) `((m n)^(m n))/((m+n)^(m+n))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the squre root of (m^(n^(2)) n^(m^(2)) a^((m +n)))/((m + n)^((m +n)^(2)))

If M sube N , then find M nn N

lim_(x rarr a)(x^(m)-a^(m))/(x^(n)-a^(n))=((m)/(n))a^(m-n) if m>n

The minimum value of the fuction f(x) given by f(x)=(x^m)/(m)+(x^(-n))/(n) " where " 1/m+1/n =1" and " m gt 1 is

(m+n)(m+n)(m+n)(m-n)(m-n)(m-n)=m^(6)-n^(6) . (True/False)

(m)/(n)x^(2)+(n)/(m)=1-2x

Let f : R - {n} rarr R be a function defined by f(x)=(x-m)/(x-n) , where m ne n . Then,

((x^(m))/(x^(n)))^(m+n)*((x^(n))/(x^(l)))^(n+l)*((x^(l))/(x^(m)))^(l+m)

If m^(n).n^(m)=800, then the value of (n)/(m) is (m < n)