Home
Class 14
MATHS
[(x^n)^(n-1/n)]^(1/(n+1))...

`[(x^n)^(n-1/n)]^(1/(n+1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : { ( x^n )^(n-1 ) }^(1/( n(n-1 )) is equal to

Let f(x)=x/(1+x^n)^(1/n) for nge2 and g(x)=ubrace(fofo…of)_("f occurs n times")(x) . Then intx^(n-2)g(x)dx equals (A) 1/(n(n-1))(1+nx^n)^(1-1/n)+K (B) 1/(n-1)(1+nx^n)^(1-1/n)+K (C) 1/(n(n+1))(1+nx^n)^(1+1/n)+K (D) 1/(n+1)(1+nx^n)^(1-1/n)+K

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

If A=([x,x],[x,x]) then A^(n)(n in N)= 1) ([2^nx^n,2^nx^n],[2^nx^n,2^nx^n]) 2) ([2^(n-1) x^n,2^(n-1) x^n],[2^(n-1) x^n,2^(n-1) x^n]) 3) I 4) ([2^(n) x^(n-1),2^(n) x^(n-1)],[2^(n) x^(n-1),2^(n) x^(n-1)])

Let S_(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^(n-2)+(1)/(x^(n-2)))+"....."+(n-1)(x+(1)/(x))+n , then

Let S_(n)(x)=(x^(n-1)+(1)/(x^(n-1)))+2(x^(n-2)+(1)/(x^(n-2)))+"....."+(n-1)(x+(1)/(x))+n , then

If int(dx)/(x^(2)(x^(n)+1)^((n-1)/(n)))=-(f(x))^((1)/(n))+C then f(x) is (A)1+x^(n)(B)1+x^(-n)(C)x^(n)+x^(-n)(D)x^(n)-x^(-n)

(x^(2^(n-1))+y^(2^(n-1)))(x^(2^(n-1))-y^(2^(n-1)))=