Home
Class 12
MATHS
prove that:|(y+z,z,y),(z,z+x,x),(y,x,x+y...

prove that:`|(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that |[y+z,z,y],[z,z+x,x],[y,x,x+y]]=4xyz

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

Prove: |(y+z, z, y),( z, z+x,x),( y, x,x+y)|=4\ x y z

Without expanding, prove the following |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

Prove that |{:(y+z,x,x),(y,z+x,y),(z,z,x+y):}|=4xyz

Using properties of determinant show that : |(y+z,x,x),(y,z+x,y),(z,z,x+y)|=4xyz

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

Prove that |(y+z, x,y),(z+x, z, x),(x+y, y, z)| = (x+y+z)(x-z)^(2) .

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

Prove that: |[y+z, z, y],[z, z+x, x], [y, x, x+y]|= 4 xyz