Home
Class 12
CHEMISTRY
Isothermally at 27^(@) C, one mole of a ...

Isothermally at `27^(@)` C, one mole of a van der Waals gas expands reversibly from 2 litres to 20 litres. Calculate the work done if `a =1.42 xx 10^(12)` dynes `cm^(4)` per mole and b= 30 cc.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of calculating the work done during the isothermal expansion of one mole of a van der Waals gas, we will use the formula for work done in a reversible process. The van der Waals equation is given by: \[ [P + a \left( \frac{n^2}{V^2} \right)](V - nb) = nRT \] Where: - \( P \) = pressure - \( a \) = van der Waals constant for attraction between particles - \( b \) = van der Waals constant for volume occupied by particles - \( n \) = number of moles - \( R \) = universal gas constant - \( T \) = temperature in Kelvin - \( V \) = volume ### Step 1: Convert the temperature to Kelvin Given that the temperature is \( 27^\circ C \): \[ T = 27 + 273.15 = 300.15 \, K \] ### Step 2: Identify the values From the problem, we have: - \( n = 1 \, \text{mole} \) - \( a = 1.42 \times 10^{12} \, \text{dynes} \cdot \text{cm}^4/\text{mole} \) - \( b = 30 \, \text{cc} = 30 \, \text{cm}^3 \) - Initial volume \( V_1 = 2 \, \text{litres} = 2000 \, \text{cm}^3 \) - Final volume \( V_2 = 20 \, \text{litres} = 20000 \, \text{cm}^3 \) ### Step 3: Calculate the initial pressure using the van der Waals equation Using the van der Waals equation at the initial state: \[ P_1 = \frac{nRT}{V - nb} - a \left( \frac{n^2}{V^2} \right) \] Substituting the values: \[ P_1 = \frac{1 \times 0.0821 \times 300.15}{2000 - 1 \times 30} - 1.42 \times 10^{12} \left( \frac{1^2}{2000^2} \right) \] Calculating \( V - nb \): \[ V - nb = 2000 - 30 = 1970 \, \text{cm}^3 \] Now substituting into the equation: \[ P_1 = \frac{0.0821 \times 300.15}{1970} - 1.42 \times 10^{12} \left( \frac{1}{4000000} \right) \] Calculating \( P_1 \): \[ P_1 \approx \frac{24.63}{1970} - 3.55 \times 10^6 \] Calculating the first term: \[ P_1 \approx 0.0125 - 3.55 \times 10^6 \approx -3.55 \times 10^6 \, \text{dynes/cm}^2 \] ### Step 4: Calculate the work done during the expansion The work done \( W \) in a reversible process for an ideal gas is given by: \[ W = -\int_{V_1}^{V_2} P \, dV \] For a van der Waals gas, we can approximate this as: \[ W = -nRT \ln \left( \frac{V_2}{V_1} \right) + a \left( \frac{n^2}{V_1} - \frac{n^2}{V_2} \right) \] Substituting the values: \[ W = -1 \times 0.0821 \times 300.15 \ln \left( \frac{20000}{2000} \right) + 1.42 \times 10^{12} \left( \frac{1^2}{2000} - \frac{1^2}{20000} \right) \] Calculating \( \ln \left( \frac{20000}{2000} \right) = \ln(10) \approx 2.302 \): \[ W = -24.63 \times 2.302 + 1.42 \times 10^{12} \left( \frac{1}{2000} - \frac{1}{20000} \right) \] Calculating the second term: \[ \frac{1}{2000} - \frac{1}{20000} = \frac{10 - 1}{20000} = \frac{9}{20000} = 0.00045 \] Thus, \[ W = -56.75 + 1.42 \times 10^{12} \times 0.00045 \] Calculating the second part: \[ W \approx -56.75 + 639000000 \] ### Final Calculation The work done during the expansion is approximately: \[ W \approx 638999943.25 \, \text{dynes/cm}^2 \] ### Conclusion The work done during the isothermal expansion of the van der Waals gas is approximately \( 639 \, \text{million dynes/cm}^2 \).
Promotional Banner

Topper's Solved these Questions

  • THERMODYNAMICS AND THERMOCHEMISTRY

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I|49 Videos
  • THERMODYNAMICS AND THERMOCHEMISTRY

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE) LEVEL-I (REASONING TYPE QUESTIONS)|2 Videos
  • THERMODYNAMICS AND THERMOCHEMISTRY

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (SUBJECTIVE) LEVEL -1 NUMERICAL PROBLEMS|8 Videos
  • TEST PAPERS

    FIITJEE|Exercise CHEMISTRY|747 Videos
  • TRANSITION ELEMENTS & COORDINATION COMPOUNDS

    FIITJEE|Exercise MATCHIG LIST TYPE QUESTIONS|1 Videos

Similar Questions

Explore conceptually related problems

If 1 mole of an ideal gas expands isothermally at 37^(@)C from 15 litres to 25 litres, the maximum work obtained is :

2 moles of ideal gas is expanded isothermally & reversibly from 1 litre to 10 litre. Find the enthalpy changes in KJ mol^(-1) .

At 27^(@)C , one mole of an ideal gas is compressed isothermally and reversibly from a pressure of 2 atm to 10 atm. Calculate DeltaU and q .

If x mole of ideal gas at 27^(@)C expands isothermally and reversibly from a volume of y to 10 y, then the work done is