Home
Class 12
CHEMISTRY
The freezing point of a solution contain...

The freezing point of a solution containing `50 cm^(3)` of ethylene glycol in `50 g` of water is found to be `-34^(@)C`. Assuming ideal behaviour, Calculate the density of ethylene glycol `(K_(f)` for water = `1.86 K kg mol^(-1)`).

Text Solution

Verified by Experts

Given ethylene glycole `=50 cm^(3): k_(1)^(t)= 1.86 K "mol"^(-1) kg`
wt. of glycol `=500xd`, where d is density of glycol
`DeltaT_(t)=(1000xxK_(b)xxW)/(mxxW)`
`34=*1000xx1.86xx50xxd)`/(62xx50)`
`:.d=1.133 g//cm^(3)`
Promotional Banner

Topper's Solved these Questions

  • LIQUID SOLUTION

    FIITJEE|Exercise SOLVED PROBLEMS (SUBJECTIVE)|17 Videos
  • LIQUID SOLUTION

    FIITJEE|Exercise SOLVED PROBLEMS (OBJECTIVE)|21 Videos
  • IONIC EQUILIBRIUM

    FIITJEE|Exercise SINGLE INTEGER ANSWER QUESTIONS|4 Videos
  • NUCLEIC ACID AND VITAMIN

    FIITJEE|Exercise ASSIGNMENT PROBLEMS (OBJECTIVE)|15 Videos

Similar Questions

Explore conceptually related problems

45 g of ethylene glycol (C_(2) H_(6)O_(2)) is mixed with 600 g of water. The freezing point of the solution is (K_(f) for water is 1.86 K kg mol^(-1) )

A solution containing 62 g ethylene glycol in 250 g water is cooled to -10^(@)C . If K_(f) for water is 1.86 K mol^(-1) , the amount of water (in g) separated as ice is :

(i) Prove that depression in freezing point is a colligative property. (ii) 45 g of ethylene glycol (C_(2)H_(6)O_(2)) is mixed with 600g of water . Calculate the freezing point depression. ( K_(f) for water = 1.86 k kg mol^(-1) )