Home
Class 12
MATHS
if f(x)=4x^3-x^2-2x+1 and g(x)={min{f(t)...

if `f(x)=4x^3-x^2-2x+1` and `g(x)={min{f(t): 0<=t<=x; 0<=x<=1, 3-x : 1}` then g(1/4)+g(3/4)+g(5/4) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=x^(3)-x^(2)-x+1 and g(x)={max{f(t);0<=t<=x},0<=x<=1,3-x,1<=x<=2 Discuss the continuity and differentiability of the function g(x) in the interval (0,2).

Let f(x)=x^(3)-x^(2)+x+1 and g(x)={("max "f(t) 0letlex 0lexle1),(3-x 1ltxle2):} then

Let f(x)=|x-1|+|x-2| and g(x)={min{f(t):0<=t<=x,0<=x<=3 and x-2,x then g(x) is not differentiable at

Let f (x)= x^3+ x^2+ x+ 1 and g(x)=max[f(t)] , 0<=t<=x , 0<=x<=1 and f(x)=3-x , 1 < x<=2 then function g(x) is

f(x)=x^(2)-4|x| and g(x)={min{f(t):-6<=t<=x},x in[-6,0] and max{f(t):0

Let f(x) = -x^(3) + x^(2) - x + 1 and g(x) = {{:(min(f(t))",",0 le t le x and 0 le x le 1),(x - 1",",1 lt x le 2):} Then, the value of lim_(x rarr 1) g(g(x)) , is........ .

If f'(x)=4x^3-3x^2+2x+k and f(0)=1, f(1)=4 find f(x)

Let f(x) = x^(3) - x^(2) + x + 1 and g(x) = {{:(max f(t)",", 0 le t le x,"for",0 le x le 1),(3-x",",1 lt x le 2,,):} Then, g(x) in [0, 2] is

F(x)=x^(3)-3x^(2)+6 and g(x)=max{F(t):x+1 =0 Find continuity and differentiability of g(x) for x in[-3,1]

Let f(x)=x^(3)-x^(2)+x+1 and g(x) be a function defined by g(x)={{:(,"Max"{f(t):0le t le x},0 le x le 1),(,3-x,1 le x le 2):} Then, g(x) is