Home
Class 12
MATHS
Given that d/dx ((1+x^2+x^4)/(1+x+x^2))=...

Given that `d/dx ((1+x^2+x^4)/(1+x+x^2))=Ax+B` What is the value of `A?`

Promotional Banner

Similar Questions

Explore conceptually related problems

Given that, (d)/(dx)((1+x^(2)+x^(4))/(1+x+x^(2)))=Ax+B What is the value of B ?

d/(dx)((1+x^2+x^4)/(1+x+x^2))=ax+b , then (a,b)=

If d/dx\ ((1+x^2+x^4)/(1+x+x^2)) = ax+b, then (a, b) =

If d/dx ((1+x^2 + x^4)/(1+x+x^2)) = ax + b , then the values of a and b are

d/(dx)(cos^-1((1-x^2)/(1+x^2)))=

If (d)/(dx)((1+x^2+x^4)/(1+x+x^2)) = a+bx , find the values of a and b .

(d)/(dx) {cos ((1-x ^(2))/(1+ x ^(2)))}=

Differentiate ((x^(2) sinx)/(1-x))

d/(dx)[tanh^(-1)((2x)/(1+x^2))]=