Home
Class 12
MATHS
The value of int0^1(x^4(1-x)^4)/(1+x^2)d...

The value of `int_0^1(x^4(1-x)^4)/(1+x^2)dx` is/are (a)`(22)/7-pi` (b) `2/(105)` (c)`0` (d) `(71)/(15)-(3pi)/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(2))dx is/are (a) (22)/(7)-pi( b) (2)/(105)( c) 0 (d) (71)/(15)-(3 pi)/(2)

7(int_0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

7(int_0^1(x^4(1-x)^4dx)/(1+x^2)+pi) is equal to

If int_0^(a) (1)/(1+4x^(2)) dx = pi/8 then a =

The value of int_0^(pi/2) (dx)/(1+tan^3 x) is (a) 0 (b) 1 (c) pi/2 (d) pi

The value of \int_{0}^{1}tan^(-1)((2x-1)/(1+x-x^2))dx is (A) 1 (B) 0 (C) -1 (D) pi/4

The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx is (A) 1 (B) 0(C)-1(D)(pi)/(4)

7(int_(0)^(1)(x^(4)(1-x)^(4)dx)/(1+x^(2))+pi) is equal to

The value of int_(0)^((pi)/(2))(dx)/(1+tan^(3)x) is (a) 0(b)1(c)(pi)/(2)(d)pi

The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2))dx ,\ is 1 b. -1 c. 0 d. pi//4