Home
Class 10
MATHS
(1-tan^2 45o)/(1+tan^2 45o) is equal to ...

`(1-tan^2 45o)/(1+tan^2 45o)` is equal to `tan90o` (b) 1 (c) `sin45o` (d) `sin0o`

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^2 45/(1+tan^2 45)

(1-tan^2 45^@)/(1+tan^2 45^@) is equal to

(1-tan^(2)45o)/(1+tan^(2)45o) is equal to tan90o(b)1(c)sin450(d)sin0o

(1 - tan^2 45^0)/(1 + tan^2 45^0)

(2tan30o)/(1+tan^2 30o) is equal to sin60o (b) cos60o (c) tan60o (d) sin30o

(2tan30o)/(1-tan^2 30o) is equal to cos60o (b) sin60o (c) tan60o (d) sin30o

(1-tan^(2)(45^(@)-A))/(1+tan^(2)(45^(@)-A)) is equal to

(1-tan^(2)45)(1+tan^(2)45)= a) tan90^0 b)1 c) sin45^0 d)0

(1) (1-tan^(2)45^(@))/(1+tan^(2)45^(@)) =