Home
Class 11
MATHS
In triangle ABC, prove that sin(B+C-A)+...

In triangle ABC, prove that `sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin Asin Bsin Cdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC, prove that sin(B+C-A)+sin(C+A-B)+sin(A+B-C)=4sin A sin B sin C .

In any triangle ABC,prove that a sin (B-C)+b sin(C-A)+c sin(A-B)=0

In any triangle ABC, prove that: a sin(B-C)+bs in(C-A)+c sin(A-B)=0

In any triangle ABC , prove that a sin A-b sin B -=c sin (A-B) .

In a triangle ABC, prove b sin B-c sin C=a sin(B-C)

In any triangle A B C , prove that: \ asin(B-C)+b sin(C-A)+csin(A-B)=0

In Delta ABC prove that a sin(B-C) + bsin(C-A) + c sin(A-B) = 0

If A+B+C =pi , prove that sin 2A+sin 2B+sin 2C=4 sin Asin B sin C.

In any triangle ABC, prove that : a sin (B -C) + b sin (C -A) +c sin (A-B) = 0 .

In any triangle ABC, prove that following: b sin B-C sin C=a sin(B-C)