Home
Class 12
MATHS
The value of integral inte^x(1/(sqrt(1+x...

The value of integral `inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi se q u a lto` `e^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^3)))+c` `e^x(1/(sqrt(1+x^2))-1/(sqrt((1+x^2)^3)))+c` `e^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))+c` none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

(v)int e^x(sqrt(1-x^(2))-(x)/(sqrt(1-x^2))dx)

int e^(x)(x+sqrt(1+x^(2)))(1+(1)/(sqrt(1+x^(2))))dx=

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

int e^(x)[(1)/(sqrt(1+x^(2)))+(1-2x^(2))/(sqrt((1+x^(2))^(5)))]dx

The value of int(log_(e)(x+sqrt(x^2)+1))/(sqrt(x^(2)+1))dx is

The value of the integral int_(1)^(sqrt(2) +1) ((x^2 -1)/(x^2+1)) (1)/(sqrt(1 +x^4)) dx is

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then

if tan^(-1){(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))}=alpha then