Home
Class 9
MATHS
f(x)=x^3-6x^2+2x-4,\ g(x)=1-2x...

`f(x)=x^3-6x^2+2x-4,\ g(x)=1-2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

By remainder Theoren, find the remainder, when p(x) is divided by g(x) where p(x)=x^3-6x^2+2x-4,g(x)=1-3/2x .

f(x)=x^3-6x^2+11 x-6,\ g(x)=x^2-3x+2 find the remainder when f(x) is divided with g(x).

f(x)=x^3-6x^2-19 x+84 ,\ g(x)=x-7 find the value of f(x)-g(x).

Using the remainder theorem , find the remainder , when p (x) is divided by g (x) , where p(x)=x^(3)-6x^(2)+2x-4,g(x)=1-(3)/(2)x .

f(x)=x^(3)-6x^(2)+11x-6,g(x)=x^(2)-3x+2

f(x)=4x^(3)-12x^(2)+14x-3,g(x)=2x-1

If f(x)=4x^3-x^2-2x+1 and g(x)={min f(t): 0<=t<=x; 0<=x<=1, 3-x : 1ltxle2} then g(1/4)+g(3/4)+g(5/4) is equal to

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR

f(x)=2x^(3)+6x^(2)+4x g(x)x^(2)+3x+2 The polynomials f (x ) and g (x ) are defined above. Which of the following polynomials is divisible by 2x+3 ?