Home
Class 12
MATHS
" The integral of "(1)/(sqrt((1-e^(2x)))...

" The integral of "(1)/(sqrt((1-e^(2x))))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate the integrals: int(e^xdx)/(sqrt(1-e^(2x)))

Integrate 1//[(1+x)sqrt((1-x^(2)))] .

The integral int(1)/((1+sqrt(x))sqrt(x-x^(2)))dx is equal to (where C is the constant of integration)

Integrate (x-1)/(sqrt(x^(2)-1)) w.r.t

Integrate int(e^x-1/(sqrt(1-x^2)))dx

The value of integral int e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))dx is equal to e^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(3))))+ce^(x)((1)/(sqrt(1+x^(2)))-(1)/(sqrt((1+x^(2))^(5))))+ce^(x)((1)/(sqrt(1+x^(2)))+(1)/(sqrt((1+x^(2))^(5))))+c none of these

Integrate cos^(−1)x/ -sqrt(1−x^2)

Integrate the function (1)/(sqrt(x^(2)-1))

Integrate the functions (sin^(-1)x)/(sqrt(1-x^(2)))