Home
Class 12
MATHS
" The smallest value of the polynomial "...

" The smallest value of the polynomial "x^(sim)3-18x^(-2)+96x" in "[0,9]" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The smallest value of the polynomial x^(3)-18x^(2)+96x in [0, 9] is …………..

The smallest value of th polynomial x^(3) - 18 x^(2) + 96 x in [0,9] is

The smallest value of the polynomial x^(3)-18x^(2)+96x is [0,9] is

The Minimum value of the function f(x)=x^(3)-18x^(2)+96x in [0,9]

The least value of the function f(x)=x^(3)-18x^(2)+96x in the interval [0,9] is 126(b)135(c)160(d)0

The least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is 126 (b) 135 (c) 160 (d) 0

The least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is 126 (b) 135 (c) 160 (d) 0

Add the polynomial x^(3)-2x-9, 5x^(3)-2x-9

Find the least value of the function f(x)=x^3-18 x^2+96 x in the interval [0,9] is ?