Home
Class 12
MATHS
e int(-1)^(2)|x^(3)-x|dx...

e int_(-1)^(2)|x^(3)-x|dx

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_(0)^(1)|5x-3|dx( ii) int_(0)^( pi)|cos x|dx( iii) int_(-5)^(5)|x-2|dx( iv )int_(-1)^(1)e^(|x|)dx(v)int_(0)^(2)|x^(2)+2x-3|dx(v)int_(1)^(4)(|x-1|+|x-2|+|x-3|)dx( vi) int_(1)^(2)|x^(3)-x|dx

Evaluate: int_0^1|5x-3|dx (ii) int_0^pi|cosx|dx (iii) int_(-5)^5|x-2|dx (iv) int_(-1)^1e^(|x|)dx (v) int_0^2|x^2+2x-3|dx (v) int_1^4(|x-1|+|x-2|+|x-3|)dx (vi) int_(-1)^2|x^3-x|dx

int_(-1)^(1)e^(2x)dx

int_(-1)^(1)e^(3x+2)*dx

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

If I_(1)=int_(e)^(e^(2))(dx)/(ln x) and I_(2)=int_(1)^(2)(e^(x))/(x)dx

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))

int_(1)^(e )x^(x)dx+ int_(1)^(e )x^(x)log x dx=

If I_(1)=int_(e)^(e^(2))(dx)/(lnx) and I_(2) = int_(1)^(2)(e^(x))/(x) dx_(1) then