Home
Class 12
MATHS
h(x)=x^(3)+x^(2)+x+1...

h(x)=x^(3)+x^(2)+x+1

Promotional Banner

Similar Questions

Explore conceptually related problems

Identify polynomials in the following: f(x)=4x^(3)-x^(2)-3x+7g(x)=2x^(3)-3x^(2)+sqrt(x)-1p(x)=(2)/(3)x^(2)-(7)/(4)x+9q(x)=2x^(2)-3x+(4)/(x)+2h(x)=x^(4)-x^((2)/(3))+x-1f(x)=2+(3)/(x)+4x

f(x)=x^(3)-x^(2)-3x-1,g(x)=(x+1)a and h(x)=(f(x))/(g(x)) where h is a rational function such that (1) it is continuous everywhere except when x=-1,(2)lim_(x rarr oo)h(x)=oo and (3) lim_(x rarr-1)h(x)=(1)/(2) then the value of h(1)

A function h is defined as follows : for x gt 0, h(x)=x^(7)+2x^(5)-12x^(3)+15x-2 for x le0, h(x)=x^(6)-3x^(4)+2x^(2)-7x-5 What is the value of h(-1) ?

Given the function g(x) = sqrt(6-2x) and h(x) = 2x^(2) - 3x + a . Then (a) evaluate h(g(2)) . (b) If f(x) = [{:(g(x), x le 1),(h(x), x gt 1):} , find 'a' so that f is continous.

If f (x) = (x ^(5) - 1 ) (x ^(3) + 1), g (x) = (x ^(2) - 1 ) (x ^(2) - x + 1 ) and h (x) be such that f (x) = g (x) h (x), then lim _( x to 1) h (x) is

Given f(x) = 3 + x : g(x) = x^(2) h(x) = (1)/(x) find fo (goh)

Let f(x)=2x^(1//3)+3x^(1//2)+1. The value of lim_(hrarr0)(f(1+h)-f(1-h))/(h^(2)+2h) is equal to

Let f(x)=x^2+(1/x^2) and g(x)=x-1/x xinR-{-1,0,1} . If h(x)=(f(x)/g(x)) then the local minimum value of h(x) is: (1) 3 (2) -3 (3) -2sqrt(2) (4) 2sqrt(2)