Home
Class 12
MATHS
" (iii) If "y=a^(a^(x))" ,show that "(dy...

" (iii) If "y=a^(a^(x))" ,show that "(dy)/(dx)=(y^(2)log a)/(1-xy log a)

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=a^(x^(a^(x^(…oo)))) , show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x log y)) .

If y=a^(x^(x^(2)*oo)), prove that (dy)/(dx)=(y^(2)log y)/(x(1-y log x*log y))

If y=e^(log x) , show that dy/dx=1

If y = e^(ax) Show that x(dy)/(dx) = y log y .

If x^y = e^(x + y) , show that (dy)/(dx) = (log x - 2)/((1 - log x)^2)

If x^(y)=e^(x-y), then show that (dy)/(dx)=(log x)/((1+log x)^(2))

If y=log(1/x) , show that dy/dx+e^y=0

If x^(y)=e^(x-y), show that (dy)/(dx)=(log x)/({log(xe)}^(2))

If log(x+y)=log(xy)+a,"show that"(dy)/(dx)=-(y^(2))/(x^(2))