Home
Class 12
MATHS
x sqrt(1+x^(2))+log(x+sqrt(x^(2)+1))...

x sqrt(1+x^(2))+log(x+sqrt(x^(2)+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

log(x+sqrt(1+x^(2)))

If y sqrt(x^(2)+1)=log(sqrt(x^(2)+1)-x), show that (x^(2)+1)(dy)/(dx)+xy+1=0

If y sqrt(x^(2)+1)=log(sqrt(x^(2)+1)-x) , show that, (x^(2)+1)(dy)/(dx)+xy+1=0

If y sqrt(x^(2)+1)= log (sqrt(x^(2)+1)-x) , prove that (x^(2)+1)(dy)/(dx) +xy+1=0 .

int((x)/(sqrt(1+x^(2)))-1)log(x+sqrt(1+x^(2)))backslash dx

int x((ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2))))dx=a sqrt(1+x^(2))ln(x+sqrt(1+x^(2)))+bx

If y sqrt(1+ x ^(2)) = log ( x + sqrt( 1 + x ^(2))) then (1 + x ^(2)) y_(1) + xy=

Differentiate log((x+sqrt(x^(2)-1))/(x-sqrt(x^(2)-1)))

If y=(x cos^(-1)x)/(sqrt(1-x^(2)))-log sqrt(1-x^(2)), then prove that (dy)/(dx)=(co^(1-x)x)/((1-x^(2))^((3)/(2)))

If y=(x sin^(-1)x)/(sqrt(1-x^(2)))+log sqrt(1-x^(2)), then prove that (dy)/(dx)=(sin^(-1)x)/((1-x^(2))^((3)/(2)))