Home
Class 12
MATHS
cos[2cos^(-1)(1)/(5)+sin^(-1)(1)/(5)]=...

cos[2cos^(-1)(1)/(5)+sin^(-1)(1)/(5)]=

Promotional Banner

Similar Questions

Explore conceptually related problems

cos[cos^(-1)(-1/5)+sin^(-1)(-1/5)] is

cos [2"cos"^(-1) (1)/(5) + "sin"^(-1) (1)/(5)]=

Prove that : cos^(-1).(3)/(5)+ cos^(-1).(12)/(13) = sin^(-1)((12)/(5))

If cos ^(-1)((3)/(5))-sin ^(-1)((4)/(5))=cos ^(-1) x, then x=

If |z-25i|le15 , then |maximum arg(z) - minimum arg(z)| equals (A) (pi)/(2)+cos^(-1)((3)/(5)) (B) sin^(-1)((3)/(5))-cos^(-1)((3)/(5)) (C) 2cos^(-1)((4)/(5)) (D) 2cos^(-1)((1)/(5))

Evaluate : cos[sin^(-1)""(3)/(5)+sin^(-1)""(5)/(13)]

If alpha=sin(sin^(-1)( 1/sqrt3)/(3)),beta=cos(cos^(-1)((1)/(sqrt(5)))-sin^(-1)((2)/(sqrt(5)))) then (beta^(2))/((3 alpha-4a^(3))^(2)) is

Evaluate :cos(2cos^(-1)x+sin^(-1)x) at x=(1)/(5)

Which of the following angles is greater ? theta_(1) = sin^(-1).(4)/(5) + sin^(-1).(1)/(3) and theta_(2) = cos^(-1).(4)/(5) + cos^(-1).(1)/(3)

Which of the following angles is greater ? theta_(1) = sin^(-1).(4)/(5) + sin^(-1).(1)/(3) and theta_(2) = cos^(-1).(4)/(5) + cos^(-1).(1)/(3)