Home
Class 12
MATHS
[[x+10,y^(2)+2y],[0,-4]]=[[3x+4,3],[0,y^...

[[x+10,y^(2)+2y],[0,-4]]=[[3x+4,3],[0,y^(2)-5y]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the values of xa n dy if [x+10 y^2+2y0-4]=[3x+4 3 0y^2-5y]

Find the values of x and y if X = Y, where X = [(x + 10, y^2 + 2y),(0, -4)] and Y = [(3x+4, 3),(0, y^2 - 5y)] .

The four lines given by y^(2)-4 y+3=0 and x^(2)+4 x y+4 y^(2)-5 y-10 y+4=0 form a

2X+3Y=[[2,3],[4,0]] and 3X+2Y=[[2,-2],[-1,5]]

Identify the type of conic section for each of the equations 1. 2x^(2) -y^(2) = 7 2. 3x^(2) +3 y^(2) -4x + 3y + 10 =0 3. 3x^(2) + 2y^(2) = 14 4. x^(2) + y^(2) + x-y=0 5. 11x^(2) -25y^(2) -44x + 50y - 256 =0 6. y^(2) + 4x + 3y + 4=0

The figure formed by the pairs of lines 3x^(2)+10xy+3y^(2)=0 and 3x^(2)+10xy+3y^(2)-4x4y-4=0 is a

I. 3x^(2) - 17x+10 = 0 II. 2y^(2) -5y+3 = 0

If 2x^(2)+2y^(2) +4x+5y+1=0 and 3x^(2)+3y^(2)+6x -7y+3k=0 are orthogonal ,then value of k is

The locus of a point "P" ,if the join of the points (2,3) and (-1,5) subtends right angle at "P" is x^(2)+y^(2)-x-8y+13=0 x^(2)-y^(2)-x+8y+3=0 x^(2)+y^(2)-4x-4y=0,(x,y)!=(0,4)&(4,0) x^(2)+y^(2)-x-8y+13=0,(x,y)!=(2,3)&(-1,5)