Home
Class 12
MATHS
The value of lim(x-> -4) (tanpix)/(x+4) ...

The value of `lim_(x-> -4) (tanpix)/(x+4) + lim_(x->oo)(1+1/x^2)^x` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of lim_(x->oo)(2-1/x+4/x^2)

The value of lim_(x rarr oo)(x^(-4)(ln x)^(10)) is

1.The value of lim_(x rarr oo)(x^(5))/(5^(x)) is

If A=lim_(xrarr-2)(tanpix)/(x+2)+lim_(xrarroo)(1+(1)/(x^(2)))^(x) , then

The value of lim_(x rarr oo)[((x+1)^(2)-1)/(x)] is

The value of lim_(x rarr oo)[((x+1)^(2)-1)/(x)] is

The value of lim_(x rarr oo)(x^(4))/(e^(x^(2))) is

If l=lim_(xto-2) (tanpix)/(x+2)+lim_(xtooo) ( (1+1)/(x^2)^2) , then which one of the following is not correct?

If l=lim_(xto-2) (tanpix)/(x+2)+lim_(xtooo) ( (1+1)/(x^2)^2) , then which one of the following is not correct?