Home
Class 12
MATHS
x=(2at)/(1-t^(2)),y=(2bt)/(1-t^(2))...

x=(2at)/(1-t^(2)),y=(2bt)/(1-t^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=a((1+t^2)/(1-t^2)),y=(2t)/(1-t^2) find dy/dx at t=1/sqrt3 .

Find the derivatives of the following : x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2))

If x=a[(1-t^(2))/(1+t^(2))],y=(2bt)/(1+t^(2) then find dy/dx .

x=(1-t^(2))/(1+t^(2)), y=(2t)/(1+t^(2)) " then " (dy)/(dx) is

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x=a((1+t^(2))/(1-t^(2))) and y=(2t)/(1-t^(2)), find (dy)/(dx)

If x =a ((1-t^(2))/( 1+ t^(2))),y =(2bt )/(1+t^(2) ),then (dy)/(dx) =

The locus of the point x=(t^(2)-1)/(t^(2)+1),y=(2t)/(t^(2)+1)

If x = (2t)/(1+t^(2)), y = (1-t^(2))/(1+t^(2)) then dy/dx =

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to