Home
Class 12
MATHS
Let alpha, beta (a lt b) be the roots of...

Let `alpha`, `beta (a lt b)` be the roots of the equation `ax^(2)+bx+c=0`. If `lim_(xtom) (|ax^(2)+bx+c|)/(ax^(2)+bx+c)=1` then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha , beta (a lt b) be the roots of the equation ax^(2)+bx+c=0 . If lim_(xtoalpha ) (|ax^(2)+bx+c|)/(ax^(2)+bx+c)=1 then

Let alpha,beta(alpha

Let alpha and beta be the roots of the equation ax^(2)+bx+c=0 then lim_(x rarr beta)(1-cos(ax^(2)+bx+c))/((x-beta)^(2))

If alpha beta( alpha lt beta) are two distinct roots of the equation. ax^(2)+bx+c=0 , then

If alpha beta( alpha lt beta) are two distinct roots of the equation. ax^(2)+bx+c=0 , then

If alpha and beta are the roots of the equation ax^(2)+bx+c=0" then "int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-bx+cx^(2)) is equal to

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 then log(a-bx+cx^(2)) is equal to