Home
Class 12
MATHS
In the interval [0,1], the function x^(2...

In the interval `[0,1],` the function `x^(25)(1-x)^(75)` takes its maximum value at the point 0 (b) `1/4` (c) `1/2` (d) `1/3`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

On the interval [0,1] the function phi(x)=x^(1005)(1-x)^(1005) takes its maximum value at point

On the interval [0,1] the function f(x)=x^(1005)(1-x)^(1002) assumes maximum value equal to

If f(x)=(1)/(4x^(2)+2x+1), then its maximum value is (4)/(3)(b)(2)/(3)(c)1(d)(3)/(4)

The first derivative of the function [cos^(-1)(sin sqrt((1+x)/(2)))+x^(x)] with respect to x at x=1 is (a) 3/4( b) 0(c)1/2(d)-1/2

On the interval I=[-2,2] , the function f(x)={{:(,(x+1)e^(-((1)/(|x|)+(1)/(x))),x ne 0),(,0,x=0):}

The value of c in Rolles theorem for the function f(x)=x^3-3x in the interval [0,\ sqrt(3)] is (a) 1 (b) -1 (c) 3//2 (d) 1//3