Home
Class 12
MATHS
The value of the determinant |(k a, k^2+...

The value of the determinant `|(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)|` is (A) `k(a+b)(b+c)(c+a)` (B) `k a b c(a^2+b^(2)+c^2)` (C) `k(a-b)(b-c)(c-a)` (D) `k(a+b-c)(b+c-a)(c+a-b)`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of k, if |(k,b+c,b^(2)+c^(2)),(k,c+a,c^(2) + a^(2)),(k,a+b,a^(2)+b^(2))| = (a - b) (b - c) (c - a) ?

The determinant a^(2)(a+b),ab,acab,b^(2)(a+k),bcac,bc,c^(2)(1+k)]|

What is the value of k, if |{:(k,b+c,b^(2)+c^(2)),(k,c+a,c^(2)+a^(2)),(k,a+b,a^(2)+b^(2)):}|=(a-b)(b-c)(c-a) ?

If |(a^2,b^2,c^2),((a+b)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a) then the value of k is a. 4 b. -2 c.-4 d. 2

If |(b +c,c +a,a +b),(a +b,b +c,c +a),(c +a,a +b,b +c)| = k |(a,b,c),(c,a,b),(b,c,a)| , then the value of k, is

In A B C ,(a+b+c)(b+c-a)=k b c if k 0 = 4

If (a+b)/(c)=(b+c)/(a)=(c+a)/(b)=k, then k is equal to 0 b.1 c.2 d.a+b+c