Home
Class 12
MATHS
" Solve "tan^(-1)sqrt(x^(2)+x)+sin^(-1)s...

" Solve "tan^(-1)sqrt(x^(2)+x)+sin^(-1)sqrt(x^(2)+x+1)=v/2

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve: tan^(-1)sqrt(x(x+1) + sin^(-1)sqrt(1+x+x^2) = pi/2

Solve the equation: tan^(-1)sqrt(x^(2)+x)+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2)

Solve the equation tan^(-1)sqrt(x^(2)+x+sin^(-1))sqrt(x^(2)+x+1)=(pi)/(2) .

Solve the equation: tan^(-1)sqrt(x^2+x)+sin^(-1)sqrt(x^2+x+1)=pi/2

solve : tan^(-1) sqrt(x(x+1))+sin ^(-1) (sqrt(1+x+x^(2)))=(pi)/(2)

Solve y=tan^(-1)((sqrt(1+x^(2))-1)/(x))

Solve the following equations. tan^-1 (sqrt(x^2 + x) + sin^-1 sqrt(x^2 + x + 1) = pi/2

Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)

Solve for x:tan^(-1)[(sqrt(1+x^(2))-sqrt(1-x^(2)))/(sqrt(1+x^(2))+sqrt(1-x^(2)))]=beta