Home
Class 12
MATHS
tan^(-1)(x)/(2)+tan^(-1)(x)/(3)=(pi)/(4)...

tan^(-1)(x)/(2)+tan^(-1)(x)/(3)=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

Q.solve for x ,tan ^(-1)(2x)+tan^(-1)(3x)=(pi)/(4)

Consider the following values of x : 1. 8 2. -4 3. (1)/(6) 4. -(1)/(4) Which of the above values of x is/are the solutions of the equation tan^(-1) (2x)+ tan^(-1) (3x) =(pi)/(4) .

If tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4) , then find the value of x.

if tan^(-1)(2x)+tan^(-1)(3x)=npi+(pi)/(4),nepsilonI then number of order pair (s) (n,x) is (are)

if tan^(-1)(2x)+tan^(-1)(3x)=npi+(pi)/(4),nepsilonI then number of order pair (s) (n,x) is (are)

Considering only the principal values of inverse functions, the set A={x ge 0 :tan^(-1)(2x)+tan^(-1)(3x)=(pi)/(4)}

Solution of the equation tan^(-1)(2x) + tan^(-1)(3x) = pi/4

Solve tan^(-1)2x +tan^(-1)3x =(pi)/(4) .

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

solve : tan ^(-1) 2x + tan ^(-1) ""3x=(pi)/(4)