Home
Class 10
MATHS
If m and n are the zeros of the polynomi...

If `m` and `n` are the zeros of the polynomial `3x^(2)+11x-4`, find the value of `(m)/(n)+(n)/(m)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(\frac{m}{n} + \frac{n}{m}\) where \(m\) and \(n\) are the zeros of the polynomial \(3x^2 + 11x - 4\). ### Step-by-Step Solution: 1. **Identify the coefficients**: The polynomial is in the form \(ax^2 + bx + c\). Here, \(a = 3\), \(b = 11\), and \(c = -4\). 2. **Use the relationships of zeros**: For a quadratic polynomial, the sum of the roots \(m + n\) and the product of the roots \(mn\) can be calculated using the formulas: \[ m + n = -\frac{b}{a} \quad \text{and} \quad mn = \frac{c}{a} \] Substituting the values: \[ m + n = -\frac{11}{3} \quad \text{and} \quad mn = \frac{-4}{3} \] 3. **Express \(\frac{m}{n} + \frac{n}{m}\)**: We can rewrite \(\frac{m}{n} + \frac{n}{m}\) as: \[ \frac{m}{n} + \frac{n}{m} = \frac{m^2 + n^2}{mn} \] 4. **Find \(m^2 + n^2\)**: We can use the identity: \[ m^2 + n^2 = (m + n)^2 - 2mn \] Substituting the values we found: \[ m^2 + n^2 = \left(-\frac{11}{3}\right)^2 - 2\left(\frac{-4}{3}\right) \] Calculating: \[ m^2 + n^2 = \frac{121}{9} + \frac{8}{3} \] To add these fractions, convert \(\frac{8}{3}\) to have a denominator of 9: \[ \frac{8}{3} = \frac{24}{9} \] Therefore: \[ m^2 + n^2 = \frac{121}{9} + \frac{24}{9} = \frac{145}{9} \] 5. **Substitute back to find \(\frac{m^2 + n^2}{mn}\)**: Now we substitute \(m^2 + n^2\) and \(mn\) into our expression: \[ \frac{m^2 + n^2}{mn} = \frac{\frac{145}{9}}{\frac{-4}{3}} \] This can be simplified by multiplying by the reciprocal: \[ = \frac{145}{9} \times \frac{-3}{4} = \frac{-435}{36} \] 6. **Final answer**: Thus, the value of \(\frac{m}{n} + \frac{n}{m}\) is: \[ \frac{m}{n} + \frac{n}{m} = -\frac{145}{12} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise Short answer type (ii) question|10 Videos
  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise Long answer type question|10 Videos
  • POLYNOMIALS

    CBSE COMPLEMENTARY MATERIAL|Exercise Practice test|10 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST (SECTION-D)|1 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION C|14 Videos

Similar Questions

Explore conceptually related problems

Find the zeros of the polynomial x^(2)-3x=m(m+3)

If m and n are zeros of the polynomial alpha x^(2)-5x+c, find the values of a and c if m+n=10=mn

If 2 and 3 are zeroes of polynomial 3x^(2)-2kx+2m then find the values of k and m.

The zeroes of the polynomial x^(2)-3x-m(m+3) are:

Find the zeros of the polynomial x^(2) - 3 x - m ( m + 3)

One zero of the quadratic polynomial 8x^(2)-18x-m is 5/2 . Find the value of m.

If x=2 and x=3 are roots of the equation 3x^(2)-mx+2n=0 , then find the values of m and m.

x/m prop Kp^(1/n) . Find the value of n

If 6m-n=3m+7n , then find the value of (m^(2))/(n^(2))

If a^(m).a^(n)=a^(nm) , then find the value of m(n-2)+n(m-2) .