Home
Class 10
MATHS
In tanA=5/12 then the value of (cosA-sin...

In `tanA=5/12` then the value of `(cosA-sinA)` `cosec A` is…….

A

`2/3`

B

`7/5`

C

`3/2`

D

`5/8`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \tan A = \frac{5}{12} \) and we need to find the value of \( ( \cos A - \sin A ) \csc A \), we can follow these steps: ### Step 1: Understand the relationship of tangent Given that \( \tan A = \frac{5}{12} \), we can interpret this in terms of a right triangle where: - The opposite side (perpendicular) to angle \( A \) is 5. - The adjacent side (base) to angle \( A \) is 12. ### Step 2: Use the Pythagorean theorem to find the hypotenuse Using the Pythagorean theorem: \[ \text{Hypotenuse}^2 = \text{Opposite}^2 + \text{Adjacent}^2 \] \[ \text{Hypotenuse}^2 = 5^2 + 12^2 = 25 + 144 = 169 \] \[ \text{Hypotenuse} = \sqrt{169} = 13 \] ### Step 3: Calculate \( \cos A \) and \( \sin A \) Now we can find \( \cos A \) and \( \sin A \): - \( \cos A = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{12}{13} \) - \( \sin A = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{5}{13} \) ### Step 4: Calculate \( \csc A \) The cosecant function is the reciprocal of the sine function: \[ \csc A = \frac{1}{\sin A} = \frac{1}{\frac{5}{13}} = \frac{13}{5} \] ### Step 5: Substitute values into the expression Now we substitute \( \cos A \), \( \sin A \), and \( \csc A \) into the expression \( ( \cos A - \sin A ) \csc A \): \[ ( \cos A - \sin A ) \csc A = \left( \frac{12}{13} - \frac{5}{13} \right) \cdot \frac{13}{5} \] ### Step 6: Simplify the expression Calculate \( \cos A - \sin A \): \[ \frac{12}{13} - \frac{5}{13} = \frac{12 - 5}{13} = \frac{7}{13} \] Now multiply by \( \csc A \): \[ \left( \frac{7}{13} \right) \cdot \left( \frac{13}{5} \right) = \frac{7 \cdot 13}{13 \cdot 5} = \frac{7}{5} \] ### Final Answer Thus, the value of \( ( \cos A - \sin A ) \csc A \) is: \[ \frac{7}{5} \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE PAPER- I (WITH SOLUTIONS) CLASS: X Mathematics (Standard)

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION -B|6 Videos
  • PRACTICE PAPER- I (WITH SOLUTIONS) CLASS: X Mathematics (Standard)

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-C|8 Videos
  • PRACTICE PAPER II

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION C|14 Videos
  • PRACTICE TEST-1

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-C|14 Videos

Similar Questions

Explore conceptually related problems

If sinA=(12)/(13) , then the value of (sec A+cosec A) is :

If cos(A - B) = (3)/(5) and tanA tanB = 2, then the value of cosA cosB is _____

Find the value of (tanA+secA-1)cosA .

The value of cosA-sinA , when A=(5pi)/(4) , is

If (sinA+cosA)/(cosA)=17/12 , then the value of (1-cosA)/(sinA) is: यदि (sinA+cosA)/(cosA)=17/12 ,है, तो (1-cosA)/(sinA) का मान क्या होगा ?

If 3tanA+4=0 , then the value of 2cotA-5cosA+sinA is equal to

In triangle ABC , right angled at B, if tanA =1/2 , then the value of (sinA(cosC + cosA))/(cosC(sinC - sinA)) is: triangle ABC में B एक समकोण है यदि tanA =1/2 तो (sinA(cosC + cosA)) /(cosC(sinC - sinA)) का मान क्या होगा ?

If secA + tanA =a, then the value of cosA is यदि secA + tanA =a हो, तो cosA का मान क्या होगा?

If cosec A =(13)/(12) then find the value of (2 sin A-3 cos A)/(4 sin A-9 cosA)