Home
Class 10
MATHS
Evaluate : (cos^(2) 20° + cos^(2) 70°) +...

Evaluate : `(cos^(2) 20° + cos^(2) 70°) + (cot 25^(@))/( tan 65^(@))` + cot 5° cot 10° cot 60° cot 80° cot 85°.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \((\cos^2 20° + \cos^2 70°) + \frac{\cot 25°}{\tan 65°} + \cot 5° \cot 10° \cot 60° \cot 80° \cot 85°\), we will simplify each part step by step. ### Step 1: Simplifying \(\cos^2 20° + \cos^2 70°\) Using the identity \(\cos(90° - \theta) = \sin \theta\), we can express \(\cos^2 70°\) as: \[ \cos^2 70° = \sin^2 20° \] Thus, we can rewrite the expression: \[ \cos^2 20° + \cos^2 70° = \cos^2 20° + \sin^2 20° \] Using the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \cos^2 20° + \sin^2 20° = 1 \] ### Step 2: Simplifying \(\frac{\cot 25°}{\tan 65°}\) Using the identity \(\tan(90° - \theta) = \cot \theta\), we can express \(\tan 65°\) as: \[ \tan 65° = \cot(90° - 65°) = \cot 25° \] Thus, we have: \[ \frac{\cot 25°}{\tan 65°} = \frac{\cot 25°}{\cot 25°} = 1 \] ### Step 3: Simplifying \(\cot 5° \cot 10° \cot 60° \cot 80° \cot 85°\) Using the identity \(\cot(90° - \theta) = \tan \theta\), we can pair the cotangents: \[ \cot 85° = \tan 5° \quad \text{and} \quad \cot 80° = \tan 10° \] Thus, we can rewrite: \[ \cot 5° \cot 85° = \cot 5° \tan 5° = 1 \] \[ \cot 10° \cot 80° = \cot 10° \tan 10° = 1 \] Now we have: \[ \cot 5° \cot 10° \cot 60° \cot 80° \cot 85° = 1 \cdot 1 \cdot \cot 60° \] ### Step 4: Evaluating \(\cot 60°\) The value of \(\cot 60°\) is: \[ \cot 60° = \frac{1}{\tan 60°} = \frac{1}{\sqrt{3}} \] ### Step 5: Putting it all together Now we can combine all parts: \[ 1 + 1 + \cot 60° = 1 + 1 + \frac{1}{\sqrt{3}} = 2 + \frac{1}{\sqrt{3}} \] ### Step 6: Rationalizing the expression To express \(2 + \frac{1}{\sqrt{3}}\) in a standard form, we can rationalize: \[ 2 + \frac{1}{\sqrt{3}} = \frac{2\sqrt{3}}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{2\sqrt{3} + 1}{\sqrt{3}} \] To eliminate the square root in the denominator, multiply the numerator and denominator by \(\sqrt{3}\): \[ \frac{(2\sqrt{3} + 1)\sqrt{3}}{3} = \frac{2 \cdot 3 + \sqrt{3}}{3} = \frac{6 + \sqrt{3}}{3} \] ### Final Answer Thus, the final evaluated expression is: \[ \frac{6 + \sqrt{3}}{3} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PRACTICE TEST-II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|6 Videos
  • PRACTICE TEST-1

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-C|14 Videos
  • PROBABILITY

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST|11 Videos

Similar Questions

Explore conceptually related problems

(tan65^(@))/(cot25^(@))

Evaluate cot (tan^(-1) (2x) + cot^(-1) (2x))

Knowledge Check

  • The value of cot5^(@)*cot15^(@)* cot 25^(@)* cot 35^(@)* cot45^(@) * cot 55^(@) * cot65^(@) * cot 75^(@) * cot 85^(@) is ________

    A
    0
    B
    `-1`
    C
    `-2`
    D
    `1`
  • The value of ( cot 54^(@))/( tan 36^(@)) + ( tan 20^(@))/( cot 70^(@))=

    A
    0
    B
    1
    C
    2
    D
    `-3`
  • Without using trigonometric tables, find the value of : (2)/(3) ((sec 56^(@))/( cosec 34^(@))) - 2 cos^(2) 20^(@) + (1)/(2) cot 28^(@) cot 35^(@) cot 45^(@) cot 62^(@) cot 55^(@) - 2 cos ^(2) 70^(@)

    A
    `(4)/(5)`
    B
    `-(3)/(4)`
    C
    `-(5)/(6)`
    D
    1
  • Similar Questions

    Explore conceptually related problems

    Find the value of (tan25^(@))/(cot65^(@)) .

    Find the value of (tan25^(@))/(cot65^(@)) .

    Show that: (cot 30^(@) cot 60^(@) - 1)/(cot 30^(@) + cot 60^(@)) = cot 90^(@)

    The value of (cot 54^(@))/(tan 36^(@)) + (tan 20^(@))/(cot 70^(@)) is

    Evaluate : cot 10^(@) .cot20^(@).cot30^(@).cot40^(@) ………cot90^(@) .