Home
Class 10
MATHS
If α and β are zeroes of the polynomial ...

If α and β are zeroes of the polynomial `P(x) = 2x^(2) + 11x + 5`, find the value of `(1)/(alpha) + (1)/(beta) - 2 alpha beta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \frac{1}{\alpha} + \frac{1}{\beta} - 2 \alpha \beta \) where \( \alpha \) and \( \beta \) are the roots of the polynomial \( P(x) = 2x^2 + 11x + 5 \). ### Step 1: Identify coefficients The polynomial is in the form \( ax^2 + bx + c \), where: - \( a = 2 \) - \( b = 11 \) - \( c = 5 \) ### Step 2: Use Vieta's formulas From Vieta's formulas, we know: - The sum of the roots \( \alpha + \beta = -\frac{b}{a} = -\frac{11}{2} \) - The product of the roots \( \alpha \beta = \frac{c}{a} = \frac{5}{2} \) ### Step 3: Substitute values into the expression Now, we substitute these values into the expression \( \frac{1}{\alpha} + \frac{1}{\beta} - 2 \alpha \beta \). First, we simplify \( \frac{1}{\alpha} + \frac{1}{\beta} \): \[ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\beta + \alpha}{\alpha \beta} \] Substituting the values we found: \[ \frac{\beta + \alpha}{\alpha \beta} = \frac{-\frac{11}{2}}{\frac{5}{2}} = \frac{-11}{5} \] Next, we calculate \( -2 \alpha \beta \): \[ -2 \alpha \beta = -2 \times \frac{5}{2} = -5 \] ### Step 4: Combine the results Now we combine the results: \[ \frac{1}{\alpha} + \frac{1}{\beta} - 2 \alpha \beta = \frac{-11}{5} - 5 \] To combine these, we need a common denominator: \[ -5 = \frac{-25}{5} \] So, \[ \frac{-11}{5} - \frac{25}{5} = \frac{-11 - 25}{5} = \frac{-36}{5} \] ### Final Answer Thus, the value of \( \frac{1}{\alpha} + \frac{1}{\beta} - 2 \alpha \beta \) is: \[ \frac{-36}{5} \]
Promotional Banner

Topper's Solved these Questions

  • PRACTICE TEST-II

    CBSE COMPLEMENTARY MATERIAL|Exercise Section B|6 Videos
  • PRACTICE TEST-1

    CBSE COMPLEMENTARY MATERIAL|Exercise SECTION-C|14 Videos
  • PROBABILITY

    CBSE COMPLEMENTARY MATERIAL|Exercise PRACTICE-TEST|11 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the zeros of the polynomial p(x) = x^(2) - px + q , then find the value of (1)/(alpha)+(1)/(beta)

If alpha and beta are the zeros of the polynomial f(x) = 5x^(2) - 7x + 1 , find the value of (1/alpha+1/beta).

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-5x+4 , find the value of (1)/(alpha)+(1)/(beta)-2 alpha beta

If alpha and beta be the zeroes of the polynomial p(x)=x^(2)-5x+2 , find the value of (1)/(alpha)+(1)/(beta)-3alphabeta.

If alpha and beta are the zeros of the quadratic polynomial f(x)=x^(2)-x-4, find the value of (1)/(alpha)+(1)/(beta)-alpha beta

If alpha beta are the zeroes of the polynomial f(x) = x^2 - 7x + 12 , then find the value of 1/(alpha) + 1/beta

If a, ß are the zeroes of the polynomial f(x) = x^2 - 7x + 12 , then find the value of 1/alpha + 1/beta .

If alpha and beta ar the zeros of the quadratic polynomial f(x)=x^(2)+x-2, find the value of (1)/(alpha)-(1)/(beta)

If alpha and beta are zeroes of the polynomial 3x^(2)-7x+1 then find the value of (1)/(alpha)+(1)/(beta)

If alpha, beta are the zeros of the polynomial 4x ^(2)+3x+7 then find the value of (1)/(alpha) + (1)/(beta).