Home
Class 12
MATHS
(1)/(sqrt(1-(bx+c)^(2)))...

(1)/(sqrt(1-(bx+c)^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

if int(dx)/(sqrt(16-9x^(2)))=Asin^(-1)(Bx)+C , then A+B=

if int(dx)/(sqrt(16-9x^(2)))=Asin^(-1)(Bx)+C , then A+B=

IF (dx)/(sqrt(16-9x^(2)))=A sin^(-1) (bx )+c then A+B=

Integration of (1)/(sqrt(ax^(2)+bx+c))dx

Integral reducible to form: (1)/(sqrt(ax^(2)+bx+c))dx

If int (1)/(sqrt(x^(2) + x+ 1)) dx = a sinh^(-1) (bx + c ) + d then descending order of a, b,c is

Using proper substitution, find (dy)/(dx) if y = tan^(-1)(sqrt(1+b^(2)x^(2)) - bx) .

Find the integral int(1)/(sqrt(a^(2)+b^(2)x^(2)))dx],[" A."(1)/(b)log bx+sqrt(a^(2)+b^(2)x^(2))|+Cquad " B."(1)/(b)log bx-sqrt(a^(2)+b^(2)x^(2))|+C],[" C."(1)/(a)log bx+sqrt(a^(2)+b^(2)x^(2))|+Cquad " D."(1)/(a)log bx-sqrt(a^(2)+b^(2)x^(2))|+C]

int(ln(x+sqrt(1+x^(2))))/(sqrt(1+x^(2)))dx=a sqrt(1+x^(2))ln(x+sqrt(1+x^(2)))+bx+c, then (A)a=1,b=-1(B)a=1,b=1(C)a=-1,b=1 (D) a=-1,b=-1

If alpha and beta are the roots of the quadratic equation ax^(2)+bx+c=0, then evaluate lim_(x rarr(1)/(a))sqrt((1-cos(cx^(2)+bx+a))/(2(1-alpha x)^(2)))