Home
Class 12
MATHS
int(1)/(log(x)e)dx" equals "...

int(1)/(log_(x)e)dx" equals "

Promotional Banner

Similar Questions

Explore conceptually related problems

int 1/x(log_(ex)e)dx is equal to

int log_(e)xdx=int(1)/(log_(x)e)dx=

int(1)/(x)(log_(ex)e)dx is equal to

int_(1)^(4) log_(e)[x]dx equals

int_(1)^(4) log_(e)[x]dx equals

The intergral int_(1)^(2) e^(x) . X^(2) (2 + log_(e)x) dx equals "

int_(1)^(x)log_(e)[x]dx

int(e^(x))/(x+1)[1+(x+1)log(x+1)]dx " equals"

int_1^(e^(17)) (pi sin (pi log_(e)x))/(x)dx equals :

int e^(log_(e)x)dx