Home
Class 12
MATHS
cos(B+c)/(2)=(sin n)/(2)...

cos(B+c)/(2)=(sin n)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Theorem 4:sin A+sin B+sin C=4(cos A)/(2)(cos B)/(2)(cos C)/(2)

(sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))(cos A)/(2)(cos B)/(2)(cos C)/(2) then lambda=

Assertion A:In/_ABC,sum(cos A)/(sin B sin C)=2 Reason R:In/_ABC,sin A+sin B+sin C=4(cos A)/(2)(cos B)/(2)(cos C)/(2)

In a triangle ABC if (sin2A+sin2B+sin2C)/(cos A+cos B+cos C-1)=((lambda)/(2))cos((A)/(2))cos((B)/(2))cos((C)/(2)) then lambda equals

If A+B+C=pi then prove that cos A+cos B+cos C=1+4sin((A)/(2))*sin((B)/(2))*sin((C)/(2))

If A+B+C=180^(@), then prove that cos^(2)(A)/(2)+cos^(2)(B)/(2)+cos^(2)(C)/(2)=2(1+sin(A)/(2)sin(B)/(2)sin(C)/(2))

If A+B+ C =pi , then prove that cos ^(2) (A/2)+ cos ^(2) (B/2) +cos ^(2) (C/2)=2(1+sin . (A)/(2) sin. (B)/(2) sin. (C)/(2))

If : A+B+C= pi "then" : 1 - sin^(2)""(A)/(2) - sin^(2)""(B)/(2)+ sin^(2)""(C)/(2)= A) 2cos""(A)/(2) * cos sin ^(2)""(B)/(2) + sin^(2)""(C)/(2) B) 2 cos ""(B)/(2)* cos ""(B)/(2) * sin""(C)/(2) C) 2 cos ""(C)/(2)* cos ""(A)/(2) * sin""(B)/(2) D) 2 cos ""(A)/(2)* cos ""(B)/(2) * sin""(C)/(2)

If A + B + C = pi , then show that sin (A + B + C)/( 2) = sin(A / 2) * cos "" (B + C)/( 2) + sin "" (B + C)/( 2) * cos "" (A) / (2)

cos A + cos B + cos C = 1 + 4sin ((A) / (2)) sin ((B) / (2)) sin ((C) / (2))