Home
Class 12
MATHS
x sqrt(1+y)+y sqrt(1+x)=0," Prove that "...

x sqrt(1+y)+y sqrt(1+x)=0," Prove that "rarr(dy)/(dx)=-(1+x)^(-2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x sqrt(1+y)+y sqrt(1+x)=0, then prove that (dy)/(dx)=-(1+x)^(-2)

If x sqrt(1+y)+y sqrt(1+x)=0, prove that (dy)/(dx)=-(1)/((x+1)^(2))

If x sqrt ( 1+ y) + y sqrt( 1+x) =0 , prove that (dy)/( dx) = - (1)/( (1+x)^2) .

if x sqrt(1+y)+ysqrt(1+x)=0 prove that (dy/dx)=-1/(1+x)^2

x sqrt(1+y)+y sqrt(1+x)=0 for, for,(dy)/(dx)=-(1)/((1+x)^(2))

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=sqrt(x+1)+sqrt(x-1), prove that sqrt(x^(2)-1)(dy)/(dx)=(1)/(2)y

If quad sqrt(1+y)+y sqrt(1+x)0,-1

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))