Home
Class 12
MATHS
sin^(-1)sqrt(x)...

sin^(-1)sqrt(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int(sin^-1sqrt(x)-cos^-1sqrt(x))/(sin^-1sqrt(x)+cos^-1sqrt(x))dx is equal to

Evaluate int(sin^-1sqrt (x)-cos^-1sqrt (x))/(sin^-1sqrt (x)+cos^-1sqrt (x))dx

cos^(-1)sqrt(1-x)+sin^(-1)sqrt(1-x)=

sin^(-1)x+sin^(-1)sqrt(1-x^(2))

If int sin^-1sqrt(x/(1+x))dx=f(x) sin^-1sqrt(x/(1+x))-sqrtx+ (hog)(x)+c , then

If x in(pi,(3 pi)/(2)) then the value of tan^(-1)((sqrt(1-sin x)+sqrt(1+sin x))/(sqrt(1-sin x)-sqrt(1+sin x)))

int_(0)^(pi//2)tan^(-1)[(sqrt(1+sin x)+sqrt(1-sin x))/(sqrt(1+sin x)-sqrt(1-sin x))]\ dx

(sin^(-1)x)/(sqrt(1+x))dx=

(sin^(-1)x)/(sqrt(1-x^(2))

(sin^(-1)x)/(sqrt(1-x^(2))