Home
Class 12
MATHS
[" Let "f'" be a one "" to - one continu...

[" Let "f'" be a one "" to - one continuous function such that "f(2)=3" and "f(5)=7" .Given "],[int_(2)^(5)f(x)dx=17" ,then the value of the definite integral "int_(3)^(7)f^(-1)(x)dx" equals to "],[[" A) "10" B) "11" () "12" D) "13]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f be a one-to-one continuous function such that f(2)=3 and f(5)=7. Given int_(2)^(5)f(x)dx=17 then find the value of int_(3)^(7)f^(-1)(x)dx

Let f be a one to one continuous function such that f(2)=3 and f(5)=6 . Given int_(2)^(5)f(x)dx=17 , then find the value of int_(3)^(7)f^(-1)(x)dx .

Let f be a one to one continuous function such that f(2)=3 and f(5)=6 . Given int_(2)^(5)f(x)dx=17 , then find the value of int_(3)^(7)f^(-1)(x)dx .

Let f be a one-to-one continuous function such that f(2)=3 and f(5)=7 . Given int_2^5 f(x)dx=17, then find the value of int_3^7 f^(-1)(x) dx .

Let f be a one-to-one continuous function such that f(2)=3 and f(5)=7 . Given int_2^5 f(x)dx=17, then find the value of int_3^7 f^(-1)(x) dx .

Let f be a one-to-one continuous function such that f(2)=3a n df(5)=7.G i v e nint_2^5f(x)dx=17 , then find the value of int_3^7f^(-1)(x)dx

If f(0)=1,f(2)=3,f'(2)=5 ,then the value of the definite integral int_(0)^(1)xf''(2x)dx is

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

The value of the integral int_(0)^(2a) (f(x))/(f(x)+f(2a-x))dx is equal to

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is