Home
Class 12
MATHS
The value of int(1/e)^(tanx)(tdt)/(1+t^2...

The value of `int_(1/e)^(tanx)(tdt)/(1+t^2)+int_(1/e)^(cotx)(dt)/(t(1+t^2)),` where `x in (pi/6,pi/3)` , is equal to: (a)0 (b) 2 (c) 1 (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(1/e)^tanx(tdt)/(1+t^2)+int_(1/e)^cotxdt/(t(1+t^2) is

The value of int_(1//e)^(tanx)(t)/(1+t^(2))dt+int_(1//e)^(cotx)(1)/(t(1+t^(2)))dt , where x in (pi//6, pi//3 ), is equal to :

The value of int_(1//e)^(tanx)(tdt)/(1+t^(2))+int_(1/e)^(cotx)(dt)/(t(1+t^(2))) is equal to

The value of int_((1)/(epsilon))^(tan x)(tdt)/(1+t^(2))+int_((1)/(epsilon))^(cot x)(dt)/(t(1+t^(2))), where x in((pi)/(6),(pi)/(3)), is equal to: (a)0(b) 2 (c) 1 (d) none of these

the value of int_((1)/(e)rarr tan x)(tdt)/(1+t^(2))+int_((1)/(e)rarr cot x)(dt)/(t*(1+t^(2)))=

[int_(1/e)^( tan x)(tdt)/(1+t^(2))+int_(1/e)^( cot x)(dt)/(t(1+t^(2)))" is "],[" equal to "]