Home
Class 12
MATHS
The global maximum value of f(x0=(log)(1...

The global maximum value of `f(x0=(log)_(10)(4x^3-12 x^2+11 x-3),x in [2,3],` is `-3/2(log)_(10)3` (b) `1+(log)_(10)3` `(log)_(10)3` (d) `3/2(log)_(10)3`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1+(1)/(2x))log_(10)3+log_(10)2=log_(10)(27-sqrt(3))

((log)_(10)(x-3))/((log)_(10)(x^(2)-21))=(1)/(2)

The equation (log_(10)x+2)^(3)+(log_(10)x-1)^(3)=(2log_(10)x+1)3

The equation (log_10x+2)^3+(log_10x-1)^3=(2log_10x+1)^3 has

Solve (x^(log_(10)3))^(2) - (3^(log_(10)x)) - 2 = 0 .

For what value of x log_(3)(x^(2)+10)>log_(3)(7x)

(1)/(2)log_(10)x+3log_(10)sqrt(2+x)=log_(10)sqrt(x(x+2))+2

log_(10)(log_(2)3) + log_(10)(log_(3)4) + …….. + log_(10) (log_(1023) 1024) equals

The value of (log_(10)2)^(3)+log_(10)8log_(10)5+(log_(10)5)^(3) is