Home
Class 12
CHEMISTRY
For the reaction N2(g) + 3H2(g) to 2NH3(...

For the reaction `N_2(g) + 3H_2(g) to 2NH_3(g) " if " (Delta[NH_3])/(Deltat) = 4xx 10^(-4) mol.l^(-1) s^(-1)`, the value of `(-Delta[H_2])/(Deltat)` would be

A

`1xx 10^(-4) mol.l^(-1) s^(-1)`

B

`3 xx 10^(-4) mol.l^(-1)s^(-1)`

C

`4xx 10^(-4) mol.l^(-1)s^(-1)`

D

`6 xx 10^(-4)mol.l^(-1)s^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the reaction and the relationship between the rates of change of the concentrations of the reactants and products. The reaction given is: \[ N_2(g) + 3H_2(g) \rightarrow 2NH_3(g) \] We are provided with the rate of formation of ammonia (\(NH_3\)): \[ \frac{\Delta[NH_3]}{\Delta t} = 4 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \] We need to find the rate of disappearance of hydrogen (\(H_2\)), represented as: \[ -\frac{\Delta[H_2]}{\Delta t} \] ### Step 1: Write the Rate Expressions From the stoichiometry of the reaction, we can express the rates of change of concentrations as follows: \[ \text{Rate} = -\frac{1}{3} \frac{\Delta[H_2]}{\Delta t} = \frac{1}{2} \frac{\Delta[NH_3]}{\Delta t} \] ### Step 2: Substitute the Known Value We know the rate of formation of \(NH_3\): \[ \frac{\Delta[NH_3]}{\Delta t} = 4 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \] Substituting this value into the rate expression for \(H_2\): \[ -\frac{1}{3} \frac{\Delta[H_2]}{\Delta t} = \frac{1}{2} \times 4 \times 10^{-4} \] ### Step 3: Calculate the Rate of Disappearance of \(H_2\) Now we can calculate the right-hand side: \[ \frac{1}{2} \times 4 \times 10^{-4} = 2 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \] Now, we can relate this to the rate of disappearance of \(H_2\): \[ -\frac{1}{3} \frac{\Delta[H_2]}{\Delta t} = 2 \times 10^{-4} \] ### Step 4: Solve for \(-\frac{\Delta[H_2]}{\Delta t}\) To find \(-\frac{\Delta[H_2]}{\Delta t}\), we can rearrange the equation: \[ \frac{\Delta[H_2]}{\Delta t} = -3 \times (2 \times 10^{-4}) \] Calculating this gives: \[ \frac{\Delta[H_2]}{\Delta t} = -6 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \] Thus, the value of \(-\frac{\Delta[H_2]}{\Delta t}\) is: \[ -\frac{\Delta[H_2]}{\Delta t} = 6 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1} \] ### Final Answer The value of \(-\frac{\Delta[H_2]}{\Delta t}\) is: \[ \boxed{6 \times 10^{-4} \, \text{mol L}^{-1} \text{s}^{-1}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For the reaction N_(2) + 3H_(2) to 2NH_(3) if (Delta[NH_(3)])/(Deltat) = 2 xx 10^(-4) mol L^(-1)s^(-1) , the value of (-Delta[H_(2)])/(Deltat) would be

For the reaction : N_(2) +3H_(2) rarr 2NH_(3)," If "(Delta [NH_(3)])/(Delta t)=2xx10^(-4)" mol L"^(-1) s^(-1) , the value of -(Delta [H_(2)])/(Delta t) would be :

For the reaction N_(2)(g) +3H_(2)(g) to 2NH_(3)(g) If Delta[NH_(3)]//Deltat= 4 xx 10^(-8)mol L^(-1)s^(-1) , what is the value of Delta[H_(2)]//Deltat =?

For the reaction N_(2)(g)+3" H"_(2)(g)to2" NH"_(3)(g) , if Delta[NH_(3)]//Deltat=4xx10^(-8)" mol L"^(-1)s^(-1) what is the value of -Delta[H_(2)]//Deltat ?

For the reaction N_(2)(g)+3" H"_(2)(g) to 2" NH"_(3)(g) , if Delta[NH_(3)]//Deltat=4xx10^(-8)"mol L"^(-1)s^(-1) what is the value of -Delta[H_(2)]//Deltat ?

For the reaction N_(2)+3H_(2) rarr 2NH_(3) , if (d[NH_(3)])/(dt).=4xx10^(-4) mol L^(-1)s^(-1) , the value of (-d[H_(2)])/(dt) would be

For the reaction , N_2+3H_2rarr2NH_3 if (d[NH_3])/(dt)=2xx10^(-4)"mol L"^(-1) s^(-1) , the value of (-d[H_2])/(dt) would be

For the reaction Fe_2N(s)+(3)/(2)H_2(g)=2Fe(s)+NH_3(g)