Home
Class 12
CHEMISTRY
The emf of the cell Cr(s) abs(Cr^(3+)(1....

The emf of the cell `Cr(s) abs(Cr^(3+)(1.0M))abs(Co^(2+)(1.0M))Co(s) [E^(o)" For " Cr^(3+)abs(Cr(s)=-0.74V & Co^(2+))Co(s) -0.28V]:`

A

`-0.74 - (-0.28)=-0.46V`

B

`-0.74 + (-0.28)=-1.02V`

C

`-0.28-(-0.74)=+0.46V`

D

`0.74+0.28=+1.02 V`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the EMF (electromotive force) of the given electrochemical cell, we will follow these steps: ### Step-by-Step Solution: 1. **Identify the Anode and Cathode:** - In the given cell representation `Cr(s) | Cr^(3+)(1.0M) | Co^(2+)(1.0M) | Co(s)`, chromium (Cr) is the anode and cobalt (Co) is the cathode. - The anode is where oxidation occurs, and the cathode is where reduction occurs. 2. **Write the Half-Reactions:** - For the anode (oxidation of chromium): \[ \text{Cr}^{3+} + 3e^- \rightarrow \text{Cr(s)} \quad (E^\circ = -0.74 \, \text{V}) \] - For the cathode (reduction of cobalt): \[ \text{Co}^{2+} + 2e^- \rightarrow \text{Co(s)} \quad (E^\circ = -0.28 \, \text{V}) \] 3. **Determine the Standard Reduction Potentials:** - Standard reduction potential for the cathode (Co): \( E^\circ_{\text{cathode}} = -0.28 \, \text{V} \) - Standard reduction potential for the anode (Cr): \( E^\circ_{\text{anode}} = -0.74 \, \text{V} \) 4. **Calculate the EMF of the Cell:** - The formula for calculating the EMF of the cell is: \[ E_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \] - Substituting the values: \[ E_{\text{cell}} = (-0.28 \, \text{V}) - (-0.74 \, \text{V}) \] - This simplifies to: \[ E_{\text{cell}} = -0.28 + 0.74 = 0.46 \, \text{V} \] 5. **Final Answer:** - The EMF of the cell is \( 0.46 \, \text{V} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

The cell emf for the cell Ni(s)abs(Ni^(2+)(1.0M))Au^(3+)(1.0M)| Au(s) (E^(o) for Ni^(2+) abs(Ni=-0.25 V,E^(o)" for " Au^(3+))Au=1.50V) is

Calculate the e.f.m of the cell Cr|Cr^(3+)(0.1M)||Fe^(2+)(0.01M)|Fe [given that E_(Cr^(3+)//Cr)^(@)=-0.75,E_(Fe^(2+)//Fe)^(@)=-0.45V]

Calculate the e.m.f. of the cell, Cr//Cr^(3+)(0.1 M) || Fe^(2+)(0.01 M)//Fe "Given" : E_(Cr^(3+)//Cr)^(@)=-0.75" V ", E_(Fe^(2+)//Fe)^(@)=-0.45" V " "Cell reaction" : 2Cr(s)+3Fe^(2+)(aq) to 2Cr^(3+)(aq)+3Fe(s) {"Hint". E_(cell)=E_(cell)^(@)-(0.0591V)/(6)"log"([Cr^(3+)]^(2))/([Fe^(2+)]^(3)}

The EMF of the cell, Cr|Cr^(+3) (0.1M) ||Fe^(+2) (0.01M)|Fe (Given: E^(0) Cr^(+3)|Cr =- 0.75 V, E^(0) Fe^(+2)|Fe =- 0.45 V)

What is the potential for the cell Cr|Cr^(3+)(0.1M)||Fe^(2+)(0.01M)|Fe E^(@)Cr^(3+)// Cr=-0.74V , E^(@)Fe^(2+)//Fe=-0.44V

Calculate e.m.f. of the following cell at 298 K, 2Cr(s)+3Fe^(2+)(0.1 M) to 2Cr^(3+)(0.01 M)+3Fe(s) ("Given" : E_((Cr^(3+)//Cr))^(@)=-0.74" V ", E_((Fe^(2+)//Fe))^(@)=-0.44" V ")

Under standered condition Delta G^(@) for the reaction 2Cr(s)= 3Cd^(2+)(aq) rarr 2Cr_((a a))^(3+) +3Cd(s) is (E_(Cr^(3+)//Cr)^(@) = - 0.74 V, E_(Cd^(2+)//Cd)^(@) = - 0.4 V)