Home
Class 12
CHEMISTRY
For the galvanic cell Zn(s)abs(Zn^(2+) )...

For the galvanic cell `Zn(s)abs(Zn^(2+) ) abs(Cd^(2+)) Cd(s),E_(cell ) = 0.30 V and E_(cell)^(o) = 0.36 V,` then value of `[Cd^(2+)]//[Zn^(2+)]` will be:

A

10

B

1

C

`0.1`

D

100

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the Nernst equation, which relates the cell potential (E) to the standard cell potential (E°) and the concentrations of the reactants and products involved in the electrochemical reaction. ### Step-by-Step Solution: 1. **Write the Nernst Equation**: The Nernst equation is given by: \[ E = E^{\circ} - \frac{2.303RT}{nF} \log \left( \frac{[\text{Products}]}{[\text{Reactants}]} \right) \] where: - \(E\) = cell potential - \(E^{\circ}\) = standard cell potential - \(R\) = universal gas constant (8.314 J/(mol·K)) - \(T\) = temperature in Kelvin (298 K at 25°C) - \(n\) = number of moles of electrons transferred in the reaction - \(F\) = Faraday's constant (96500 C/mol) 2. **Identify the Given Values**: From the problem, we have: - \(E = 0.30 \, V\) - \(E^{\circ} = 0.36 \, V\) - \(n = 2\) (since 2 electrons are involved in the reaction) 3. **Calculate the Value of \(\frac{2.303RT}{nF}\)**: Plugging in the values: \[ \frac{2.303 \times 8.314 \times 298}{2 \times 96500} \] This simplifies to: \[ \frac{2.303 \times 8.314 \times 298}{193000} \approx 0.0591 \, V \] 4. **Substitute into the Nernst Equation**: Now we can substitute the known values into the Nernst equation: \[ 0.30 = 0.36 - 0.0591 \log \left( \frac{[\text{Zn}^{2+}]}{[\text{Cd}^{2+}]}\right) \] 5. **Rearranging the Equation**: Rearranging gives: \[ 0.0591 \log \left( \frac{[\text{Zn}^{2+}]}{[\text{Cd}^{2+}]}\right) = 0.36 - 0.30 \] \[ 0.0591 \log \left( \frac{[\text{Zn}^{2+}]}{[\text{Cd}^{2+}]}\right) = 0.06 \] 6. **Solving for the Logarithm**: Dividing both sides by 0.0591: \[ \log \left( \frac{[\text{Zn}^{2+}]}{[\text{Cd}^{2+}]}\right) = \frac{0.06}{0.0591} \approx 1.014 \] 7. **Finding the Ratio**: Converting from logarithmic form: \[ \frac{[\text{Zn}^{2+}]}{[\text{Cd}^{2+}]} = 10^{1.014} \approx 10.26 \] 8. **Finding the Inverse Ratio**: Since we need \(\frac{[\text{Cd}^{2+}]}{[\text{Zn}^{2+}]}\): \[ \frac{[\text{Cd}^{2+}]}{[\text{Zn}^{2+}]} = \frac{1}{10.26} \approx 0.0975 \approx 0.01 \] ### Final Answer: The value of \(\frac{[\text{Cd}^{2+}]}{[\text{Zn}^{2+}]}\) is approximately **0.01**.
Promotional Banner

Similar Questions

Explore conceptually related problems

In the cell Zn//Zn^(-2) (c_(1))//cu, E_(cell) - E_(cell)^(0) = 0.059 V The ratio (C_(1))/(C_(2)) at 298 K will be

For the cell given, below Zn|Zn^(2)||Cu^(2+)|Cu,(E_(cell)-E_(cell)^(@)) is -0.12 V. it will be when

Calculate the standard reduction potential of Cd^(2+)//Cd electrode for the cell : Zn(s)|Zn^(2+)("IM") || Cd^(2+)(IM)|Cd(s) ("Given that " E_(cell)^(@)=0.36 V and E_(Zn^(2+)//Zn)^(@)=-0.76V)

The EMF of the cell, Zn|Zn^(2+) (0.1 M) || Cd^(2+) (M_(1)) |Cd has been found to be 0.3305 V at 298 K . Calculate the value of M_(1) [E_((Zn^(2+) |Zn))^(@) = - 0.76 V , E_((Cd^(2+) |Cd))^(Theta) = -0.40 V]

For the net cell reaction of the cell Zn(s) |Xn^(2+) ||Cd^(2+) |Cd(s) DeltaG^(@) in Kilojules at 25^(@)C is (E_(cell)^(@) = 0.360 V) :-

For the galvanic cell, Zn(s) + Cu^(2+) (0.02M) to Zn^(2+) (0.04 M) + Cu(s) , E_cell = ______________ xx 10^(-2) V. (Nearest integer)