Home
Class 12
MATHS
The minimum value of e^(2x^2-2x+1)sin^(2...

The minimum value of `e^(2x^2-2x+1)sin^(2x)` is `e` (b) `1/e` (c) 1 (d) 0

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of e^((2x^(2)-2x+1)sin^(2)x) is

The minimum value of sqrt(e^(x^(2)) -1) is

The minimum value of 4e ^(2x) + 9e^(-2x) is

The minimum value of (x)/((log)_(e)x) is e(b)1/e(c)1(d) none of these

The minimum value of x(log)_(e)x is equal to e (b) 1/e(c)-1/e (d) 2e( e )e

The minimum value of, 25cos e c^2x+16 sin^2x (A) 41 (B) 42 (C) 43 (D) none of these

The maximum value of (log x)/(x) is (a) 1 (b) (2)/(e)(c) e (d) (1)/(e)

the value of int_(0)^(1)e^(2x-[2x])d(x-[x])

If f(x)= e^(coscos^-1x^2+tancot^-1 x^2), then minimum value of f(x) is (A) e (B) e^2 (C) e^(2/3 (D) none of these

The maximum value of x^((1)/(z)),x>0 is (a) e^((1)/(e))(b)((1)/(e))^(e)(c)1(d) none of these