Home
Class 12
MATHS
Let f(x)=cospix+10x+3x^2+x^3,-2lt=xlt=3....

Let `f(x)=cospix+10x+3x^2+x^3,-2lt=xlt=3.` The absolute minimum value of `f(x)` is 0 (b) `-15` (c) `3-2pi` none of these

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The absolute minimum value of f(x)=sinx in [0,(3pi)/(2)] is :

Find the absolute maximum and absolute minimum values of f(x)=(x-1)^(2)+3 in [-3,1]

The absolute value of |x-2|+|x+2| , if 0lt xlt 2 is

Let f(x)=sin x+2cos^(2)x,x in[(pi)/(6),(2 pi)/(3)] then maximum value of f(x) is

let ={14-10x+x^(2)-x^(3),x 1f(x)={14-10x+x^(2)-x^(3),x 1 then f(x) attains the absolute minimum value at x=1 if p takes vLues in the range

The maximum and minimum values of f(x)=secx+logcos^(2)x,0 lt x lt 2pi are respectively

Find the absolute maximum value and the absolute minimum value of f(x)=(1/2-x)^(2)+x^(3)in[-2,2.5]

Let f(x)=x^3+3/2x^2+3x+3 , then f(x) is

Let f(x) =sinx + 2 cos^(2)x (pi)/(4)lt=x lt= (3pi)/(4) . Then f attains its